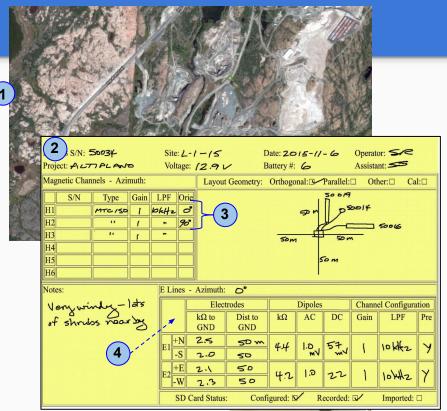
Guide For MT Field Operations PHOENIX **GEOPHYSICS**

- 2. Choose the site
- 3. Configuration Creator
- 4. Configuration, gains and LPF
- 5. Equipment and Tools
- 6. Set up the layout
- 7. Connecting GPS / Battery
- 8. Calibrating Equipment
- 9. Invalid Calibration
- 10. Receiver calibration QC
- 11. Receiver calibration QC (MTU5D)
- 12. Receiver calibration QC Variations
- 13. Sensor calibration QC
- 14. Sensor calibration QC Noise
- 15. Sensor calibration QC Bad curve
- 16. Setting up a survey site
- 17. Electric Channels
- 18. Best Practices (Electric Channels)
- 19. Magnetic Sensors
- 20. Checklist
- 21. Test Recording
- 22. Software Recommendations
- 23. Best practices

Version: 200910 ID: DAA22


Choose the site

- 1. Choose the Site(s)
- 2. Configuration Layout E-lines orientation
 - True North
 - Magnetic North
 - Azimuth
- 3. Identify the magnetic declination
- 4. Define how your equipment will be allocated
- 5. Create the file configuration (config.json) SD Card

Avoid:

- Hikers
- Industrial or transport activity
- Power lines or electric fences
- Protect the equipment from wild animals, livestock, and even from vegetation (under windy conditions, can induce micro-vibrations that will add noise to the recording)

*Obtain permission to conduct the work on the site

Configuration Creator

- 1. Check that the **Receiver type** is MTU-5C
- 2. Select the Schedule
 - 2.1. Manual or Automatic Start
 - 2.2. Or for a specific schedule use, Single Shot, Daily or Weekly and click Add Schedule to define the time and date
- 3. Live tool (see the <u>Networking</u> <u>Settings</u> manual)
- 4. Channels Settings
- 1. Define the Receiver Settings Sampling Mode and/or Sampling Rate
- 5. Configuration Layout

is	Configuration Creator - Choower File Receiver Schedule 2 ne	- 🗆 X
e, y	Manual Ctrl+Alt+1 Manual Ctrl+Alt+2 Single Shot Ctrl+Alt+3 Daily Ctrl+Alt+4 Weekly Ctrl+Alt+5 Add Schedule Ctrl+A	A Channel H2 Magnetic channel settings Enabled Sensor Type MTC-150 Gain Normal Low Pass Filter 10 kHz Sensor S/N 0 Channel H2
-		 Receiver Settings Sampling Mode Configuration layout Layout Geometry Orthogonal Tenable
	<i>i</i> This section is used for inputting the parameters and instrument details that will be used for the recording	Survey Name Site Name Operator(s) Company Name Configuration Notes Additional information

Configuration, gains and LPF

Electric Channels

- 1. Prefer Gain "Normal" in most cases
 - Only increase the gain when an overnight recording in the same area used less that 5% of the input range at all times
 - When there are more than 5% saturations, first check for noise sources and try to eliminate them. If not possible, prefer first reducing dipole lengths, and only reduce the channel gain as last resort.

Magnetic Channels

- 2. Ensure that sensor type reads the correct sensor to prevent over-voltage to the sensor
- 3. With MTC-150, prefer Gain "Normal"
- 4. Set the LPF as low as possible to allow only frequencies of interest, based on sensor

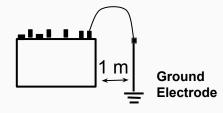
Equipment and Tools

Equipment

- 1. Configuration Layout Sheet
- 2. Laptop
- **3.** EMpower + License
- 4. SD Card with config file for each operation
 - Sensor Calibration
 - Receiver Calibration
 - Desired type of data recording (Orthogonal or Parallel)
- 5. Receiver
- 6. 12 V Battery
- 7. Power Cable and GPS Cable
- 8. Antenna
- 9. Magnetic Sensors and cables
- **10.** Electrodes
- 11. E-line cable

Tools & Supplies

- 1. Shovel
- 2. Container of salt water (50 g/L)
- 3. Handheld compass
- 4. Measuring tape
- 5. Multimeters (Analog and digital)

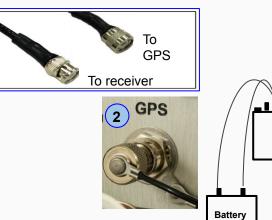

- 6. Pencil and permanent marker
- 7. Bubble Level
- 8. Wire cutters
- 9. Electrical tape / Flagging tape
- **10.** Tarp

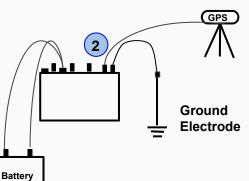
Set up the layout

- 1. Ensure the right location as defined for the recording site
 - Use a full GPS locator
- 2. Choose a dry spot for the site layout centre
- **3.** Stay clear of noise sources
- 4. Choose the centre spot for the ground electrode, less than 1 m from the receiver



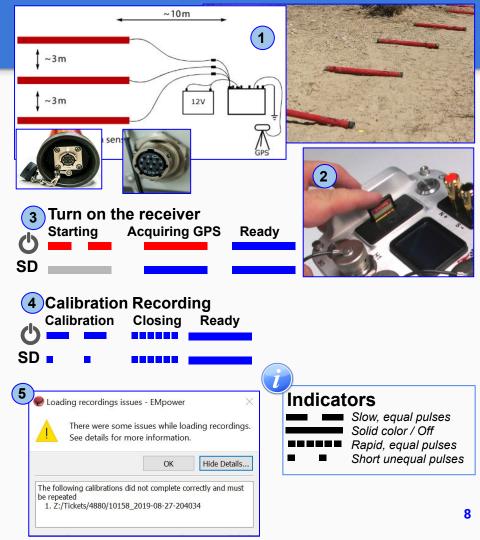
Connecting GPS / Battery


1. Battery


- Connect the battery,
 - Red (+) positive
 - Black (-) negative
- Fit the slotted connector (to the receiver's connector)

2. GPS

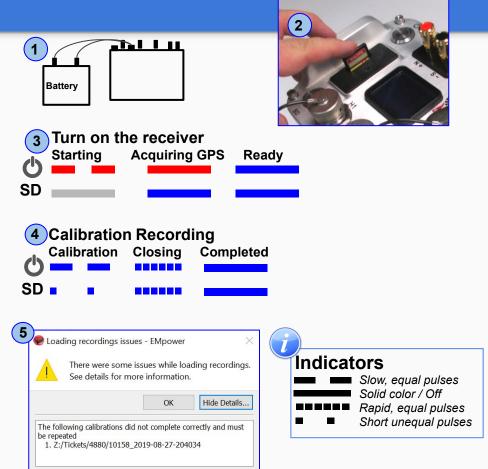
- Connect the cables on the GPS antenna and Receiver
- \circ $\hfill Keep the GPS antenna in the receiver bag$
 - In case of the reception is not good use the antenna tripod, if necessary tape the antenna tripod to a stake, post or large tripod

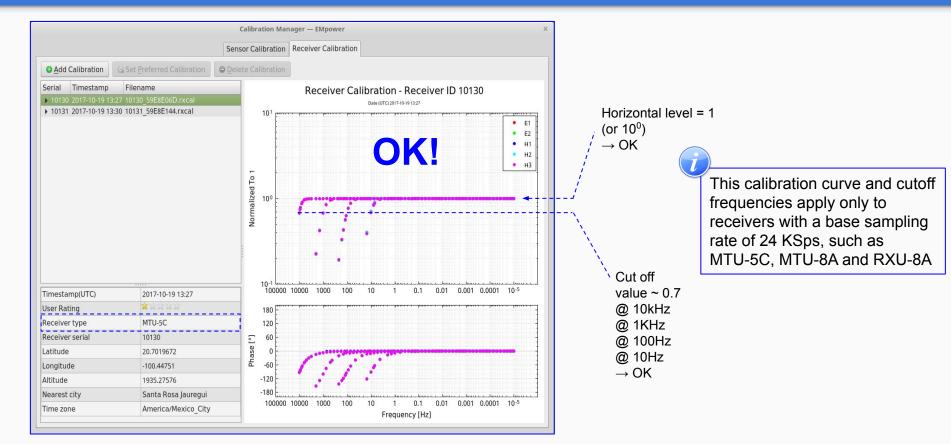

Sensors Calibration

- 1. Connect the battery
- 2. Connect the sensors (Sensors should only be calibrated outdoors and away from noise)
- 3. Insert the SD Card on the receiver

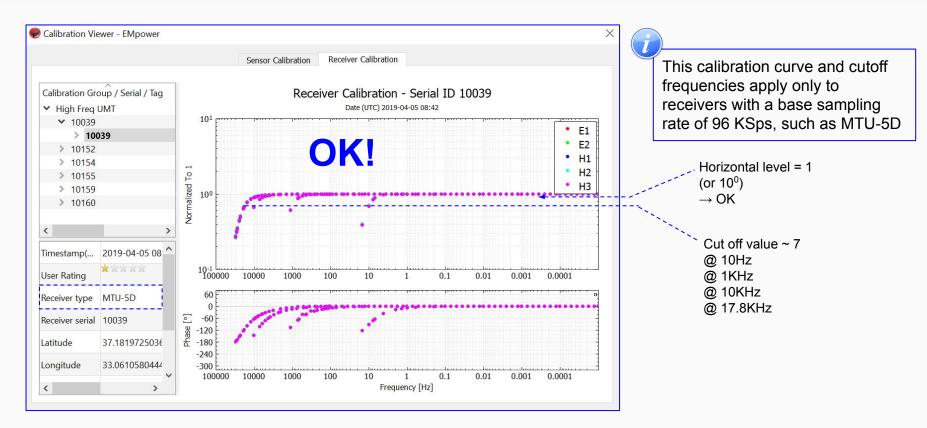
• Config file for Sensor *For any problem with the SD Card, check the Troubleshooting manual

- 4. Turn on the Receiver
- 5. Start the Calibration Recording
 - The calibration process should take place at the beginning of every survey (The sensors do not have to be buried to be calibrated)
- **6.** To avoid this warning, wait until the calibration is completed. When the calibration process is interrupted before the calibration is completed, it can not be imported into EMpower

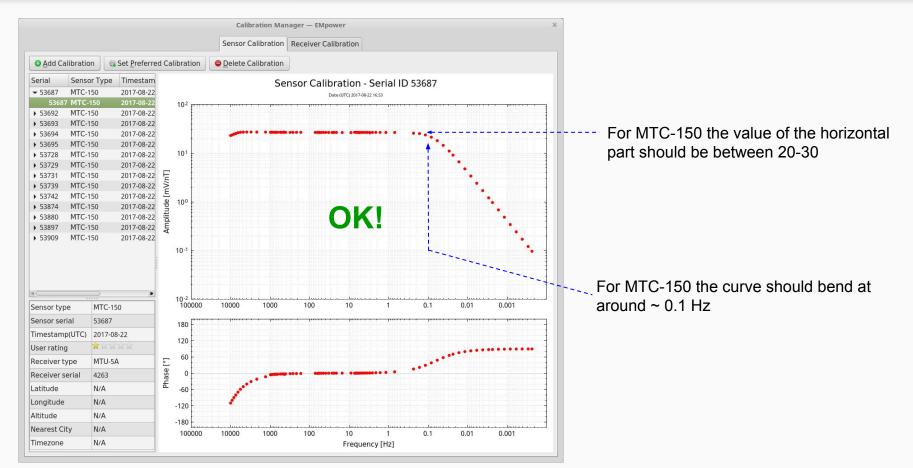

*Use EMpower (Manage module) to view and quality control the calibration


Receiver Calibration

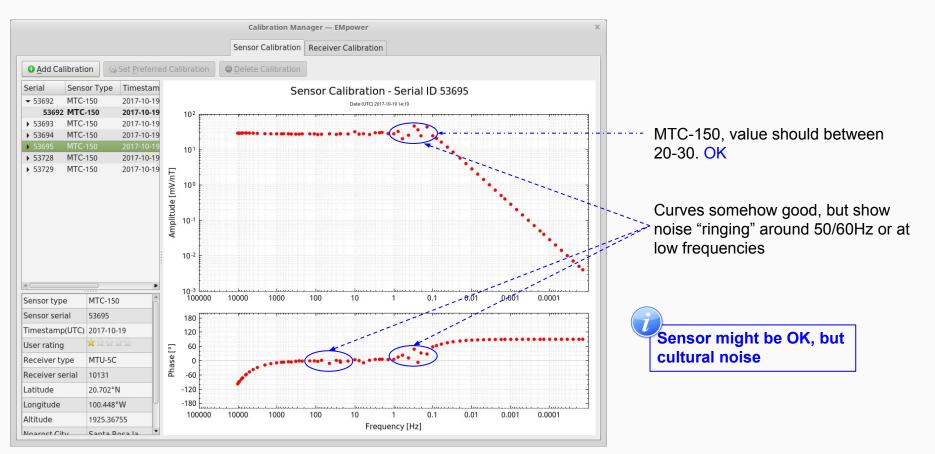
- 1. Connect the battery
- 2. Insert the SD Card on the receiver
 - Config file for Receiver *For any problem with the SD Card, check the Troubleshooting manual
- 3. Turn on the Receiver
- 4. Start the Calibration Recording
 - The calibration process should take place at the beginning of every survey
- **5.** To avoid this warning, wait until the calibration is completed. When the calibration process is interrupted before the calibration is completed, it can not be imported into EMpower


*Use EMpower (Manage module) to view and quality control the calibration

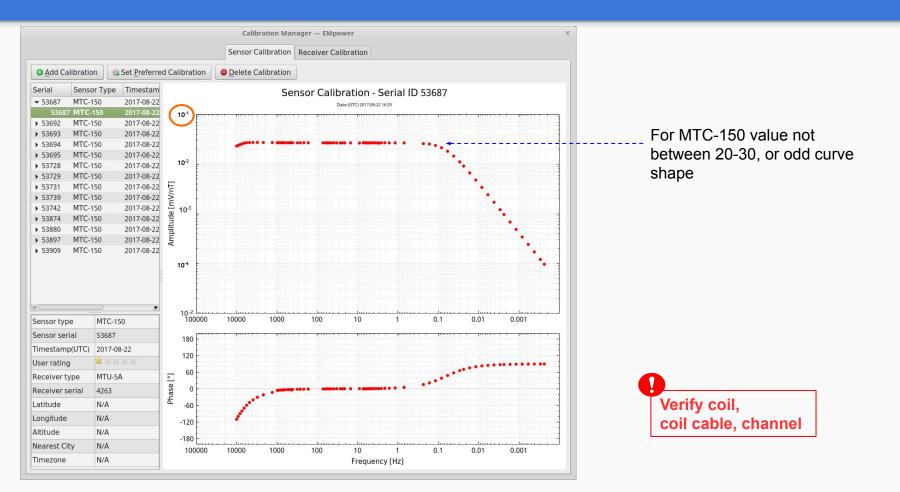
Receiver calibration QC - MTU-5C / MTU-8A / RXU-8A


Receiver calibration QC - MTU-5D

Receiver calibration QC



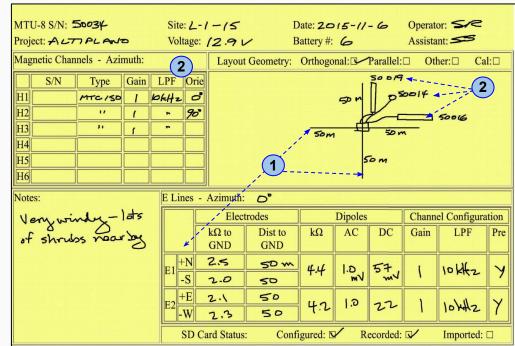
Sensor calibration QC

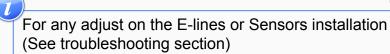


13

Sensor calibration QC

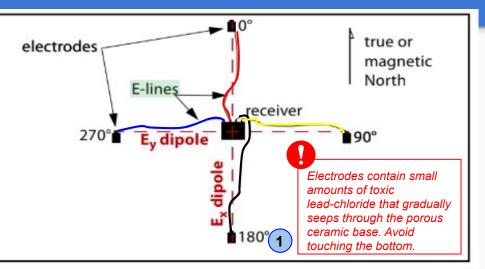
Sensor calibration QC

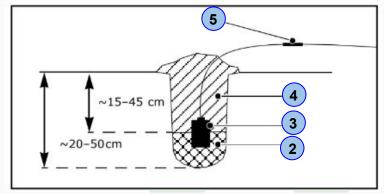

Setting up a survey site


- Following the Configuration Layout, use a compass to orient the electrodes to the north, south, east, and west of the ground electrode to layout the E-lines
 - Use coloured adhesive tape to mark the length of half the desired dipole on precut E-line cables

colour-coded:

- Red for north Black for south
- Yellow for east Blue for west
- 2. Orient the Sensors following the Configuration Layout
 - Try to order the sensors by serial number where the minor number is for Hx


*The longer the dipole, the better signal-to-noise ratio but the greater the AC the voltage induced by the local power grid

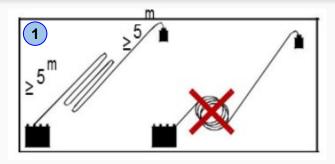


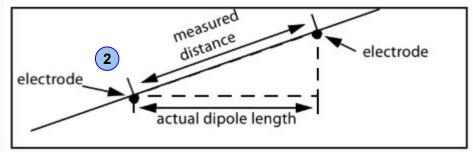
Electric Channel

- 1. Register the electrode number and /or cable number on the Layout Sheet
- **2.** Dig a small hole about 20-50 cm deep removing any sizeable rocks
 - Loosen the dirt at the bottom of the hole
 Pour in at least 1 liter of salt water and mix it
 with the dirt to form a uniform mud
- **3.** Place the electrode upright in the hole Rotating it back and forth to position it solidly in the mud, Leave the electrode cable extended outside the hole (5)
- 4. Cover the electrode completely with the loose dirt
- 5. Connect E-lines to electrodes

Best practices

1. Excess cable:

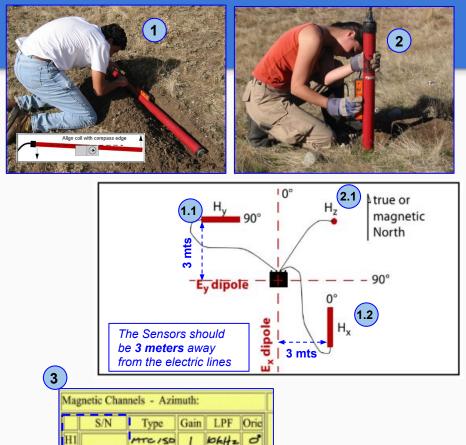

Always lay excess cable in elongated
 S-shapes, no closer than 5m from the ends


2. Slope:

 E-lines laid out down a steep slope can also create a problem: the measured distance between the electrodes no longer equals the actual horizontal length of the dipole. Instead, the measured distance is a vector resulting from both horizontal and vertical displacement

*If you encounter inclines of 20°, you must compensate using trigonometry

- One way is to calculate how much to lengthen the E-lines when laying out the site so that the horizontal component of the vector is the desired dipole length
- Alternatively, you can make no compensation in the field, and instead calculate the actual horizontal dipole length before processing the data


To minimize wind-induced noise, ensure that the sensors cables lie flat on the ground. Place weights on them every meter or so if necessary

Magnetic Sensors

Alignment of the sensors

- 1. Horizontal (Hx / Hy), dig a hole to lay out the sensor 40 cm deep x 15 cm from each end and 10-15 cm from each side
 - 1.1. The free end of Hy points East (connector points west)
 - 1.2. The free end of **Hx** points North (connector points south)
- 2. Vertical (Hz)
 - 2.1. Dig a narrow hole deep enough to completely bury the sensor
- **3.** Record the serial numbers of the coils (Sensors) on the layout sheet before burying them

95

H1 H2

H3

H4

H5

..

31

Checklist

- Battery
- GPS antenna
- Insert an SD card with a valid configuration file
- GPS synchronization
- Measure electric line, and orient both electric line and sensors
 - Take note of terrain incline if >20 degrees
- Keep cables flat on the ground, (not draped over plants or obstacles). Bury or weight the cables if necessary to reduce wind noise
- Ensure clear sight-lines between the GPS antenna and the sky
- Run a test Recording (see next page)

*Keep accurate records on a layout sheet.

Test Recording

- 1. Insert the SD Card
- 2. Turn on the **receiver** *For any problem with the SD Card, check the Troubleshooting manual
- 3. Record test data (no longer than 10 minutes)
- 4. Stop the recording
- 5. Turn off the receiver and extract the SD Card
- 6. Insert the SD Card in the computer and open EMpower
- 7. Click the Evaluate button
- 8. Select View data
 - Select the SD card (The recording process creates two folders, log and recdata)
 - Open recdata folder and select the desired recording folder and click Choose
 - Review the recording information

*Verify that there is not a warning icon on the left of the channels or next to the Recording ID

Software Recommendations

- Use evaluate for ultra-fast quality control in the field (no need to transfer data, response in seconds)
- Do not copy data to your computer, instead create a project where you want the data, and import the data into the project from the card
- Use parallel tasks
 - Import data in parallel
 - Process several sites in parallel
- When editing, prefer starting with robust and only clear details manually after

Best Practices

- Do not push the SD/screen button when instrument is detecting sensors (top LED flash blue, bottom solid blue)
- Prevent connector caps from touching electrodes, they can introduce wide-band noise
- Note that the electric binding post order is different from MTU-5A
- GPS antenna stores nicely in the pocket!
- Alway close the SD door (keep sand and water away)
- Use bag flap as sun shade and water protection

